
Flexible Structure Editing of Well-Typed Expressions
(Extended Abstract)

David Moon
University of Colorado Boulder

dmoon1221@gmail.com

Cyrus Omar
University of Chicago
cyrus.omar@gmail.com

R. Benjamin Shapiro
University of Colorado Boulder
ben.shapiro@colorado.edu

1 Introduction
Structure editors allow the programmer to edit the tree struc-
ture of a program directly. They can provide cognitive bene-
fits for novice programmers, simplify language composition,
and improve the availability of editor services. They are also
known for being difficult to use.
We present the structure editor design of Hazel, a live

functional programming environment. Hazel’s type-aware
edit actions enforce the invariant that every program edit
state is not only syntactically well-formed, but also statically
[4] and dynamically [3] well-defined. Central to these guar-
antees is automatic insertion of typed holes at and around
incomplete and type-incorrect portions of the program.

Prior structure editors have attempted to improve usabil-
ity by allowing tightly scoped violations of syntactic well-
formedness. For example, the Cornell Program Synthesizer
enforces high-level tree structure but allows the user to con-
struct expressions and bindings via text editing [5]. We do
not have the same leniency if we are to upholdHazel’s robust
semantic guarantees—every edit state must be a well-formed,
well-typed expression. We present our attempt at designing
an ergonomic structure editor under this constraint.

2 Structure Editor Design
We designed Hazel’s structure editor to maximize carryover
of users’ text editing intuitions. We motivate four main fea-
tures supportingHazel’s ergonomics, then demonstrate them
in a concrete example.

(1)Automatic Hole Insertion. Naïvely enforcing an injunc-
tion on ill-typed edit states would force programmers to
construct programs in a rigid “outside-in” manner. Hazel’s
type-aware edit actions address this issue by automatically
enclosing unfinished or type-inconsistent parts of the pro-
gram in holes.

(2) Tree Linearization. Text editors present character se-
quences in a 2D interface by dividing the sequence into rows.
Hazel’s syntax directly encodes the vertical and horizontal
linearity of text editing to which computer users are accus-
tomed. An expression in Hazel is encoded as a sequence of
leading line items, which may introduce bindings (e.g., let
x = 1 in), followed by a concluding line item (e.g., x + 1).

TyDe’19, August 18, 2019, Berlin, Germany
2019.

A concluding line item is encoded as an unassociated infix
operator sequence—Hazel internally re-associates operator
sequences as needed for typechecking, but the association
does not affect how the user navigates and edits the sequence.
This structure helps facilitate natural left-to-right program
editing and free use of vertical space. As we will see below,
line items and operators also serve as useful landmarks for
staged node transformations.

(3) Explicit Tree Signifiers. Contemporary structure edi-
tors have made significant strides in usability, but issues
remain. In a controlled user evaluation of MPS, a state-of-
the-art structure editor, Berger et al. [1] report that novice
users perceive selection as inaccurate relative to that in text
editing, and that both novices and experts perceive deletion
as relatively inaccurate. The issue is that MPS presents a
linear textual notation but often requires awareness of the
underlying tree structure in order to predict edit results.
To address this problem, Hazel features a novel cursor

system that augments the familiar cursor of text editors with
visual markers of the current node’s tree structure. These
markers facilitate understanding of the program’s tree struc-
ture as well as indicate which node would be removed by
deletion. At the same time, they require no additional screen
real estate, a known issue with blocks-based interfaces [2].

(4) Node Staging Mode. Prior work on structure editing er-
gonomics has proposed a variety of solutions to constructing
infix operator sequences in the manner of text editing, i.e.,
with similar keystrokes. There has been comparatively little
attention paid to complex tree transformations involving
other syntactic forms. Hazel features a novel node staging
mode that facilitates exploration of valid node transforma-
tions. Whereas other structure editors require a “configure
then invoke” flow, where child nodes must be selected before
invoking construction of the new parent node, Hazel’s node
staging mode enables a more natural “invoke then configure”
flow, similar to that of text editing.

2.1 Example
We now give an example-driven overview of these features.

Suppose we are implementing a combat game and, specif-
ically, defining a function damage : Attack -> Num. An
Attack is a tuple consisting of the attack type and a critical
hit multiplier, and the returned Num is the damage points
inflicted upon the current player.

TyDe’19, August 18, 2019, Berlin, Germany David Moon, Cyrus Omar, and R. Benjamin Shapiro

All following listings should be interpreted as filling the body
of the damage function.

...

Suppose we have so far implemented damage as follows.

We press keys + . . .

. . . and 1 .

A naïve structure editor design would apply edits as context-
free transformations, leading to the result 2*(crit+1).Hazel
avoids this issue via Features (1) and (2), while Hazel’s edit
actions re-parse operator precedence as needed for type-
checking. This approach is similar to MPS’s side transforma-
tions [6]. We defer to [4] for more examples of hole insertion.

...

We have in scope the player’s defenseScore and want to
integrate it into the damage calculation. Our plan is to bind
the current expression to a new variable attackScore and re-
turn a damage score in terms of attackScore and defenseScore.

We have moved the cursor to the start of the case expression.
Note that the dark green cursor is augmented with a light
green shading of the the case node and outlines of its child
nodes [Feature (3)].

We press Enter to create a new empty line. Direct encod-
ing of line items allows us to create space around existing
nodes in preparation for a complex node construction, just
like in a text editor.

We type the keys l e t Space to construct a new let line.

By recognizing keywords that prefix syntactic forms, Hazel
eliminates the requirement to learn keyboard shortcuts.

...

Now that we have created attackScore, we want to bind
it to the subsequent case expression. In a text editor, we
would delete the delimiter in and retype it after the case
expression. Similarly, we hit Backspace .

We have entered node staging mode [Feature (4)]. Just as a
code completion menu facilitates exploration of valid token
completions, node staging mode facilitates exploration of
valid placements of a node’s syntactic delimiters. The in
delimiter is highlighted in dark green to indicate that it is
the delimiter to be placed, while the dark green guide on
the left signifies possible positions. The two children nodes
of the let line are highlighted to indicate that, if we were to
press Backspace again, they would be deleted as well.

We press → or ↓ to move in to the next position.

We press Enter to accept this position and return to normal
editing mode.

Note the similarity in keystrokes to the text editor experi-
ence.

...

We have entered our final calculation but have forgotten to
account for operator precedence. We press (at the start of
the return expression.

In the case of parentheses, Hazel enters node staging mode
automatically if it detects ambiguity in intent. We press →

for the next position.

Finally we press Enter or) to accept and exit node staging.

Once again, note the similarity in keystrokes to the text
editor experience.

Flexible Structure Editing of Well-Typed Expressions (Extended Abstract) TyDe’19, August 18, 2019, Berlin, Germany

References
[1] Thorsten Berger, Markus Völter, Hans Peter Jensen, Taweesap Dang-

prasert, and Janet Siegmund. 2016. Efficiency of Projectional Editing: A
Controlled Experiment. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (FSE
2016). ACM, New York, NY, USA, 763–774. https://doi.org/10.1145/
2950290.2950315

[2] Jens Monig, Yoshiki Ohshima, and John Maloney. 2015. Blocks at Your
Fingertips: Blurring the Line Between Blocks and Text in GP. In Proceed-
ings of the 2015 IEEE Blocks and Beyond Workshop (Blocks and Beyond)
(BLOCKS AND BEYOND ’15). IEEE Computer Society, Washington, DC,
USA, 51–53. https://doi.org/10.1109/BLOCKS.2015.7369001

[3] Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. 2019.
Live functional programming with typed holes. PACMPL 3, POPL (2019),
14:1–14:32. https://doi.org/10.1145/3290327

[4] Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and
Matthew A. Hammer. 2017. Hazelnut: a bidirectionally typed structure
editor calculus. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris, France, January
18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM,
86–99. https://doi.org/10.1145/3009837

[5] Tim Teitelbaum and Thomas Reps. 1981. The Cornell Program Synthe-
sizer: A Syntax-directed Programming Environment. Commun. ACM
24, 9 (Sept. 1981), 563–573. https://doi.org/10.1145/358746.358755

[6] Markus Voelter, Tamás Szabó, Sascha Lisson, Bernd Kolb, Sebastian
Erdweg, and Thorsten Berger. 2016. Efficient Development of Consis-
tent Projectional Editors Using Grammar Cells. In Proceedings of the
2016 ACM SIGPLAN International Conference on Software Language
Engineering (SLE 2016). ACM, New York, NY, USA, 28–40. https:
//doi.org/10.1145/2997364.2997365

https://doi.org/10.1145/2950290.2950315
https://doi.org/10.1145/2950290.2950315
https://doi.org/10.1109/BLOCKS.2015.7369001
https://doi.org/10.1145/3290327
https://doi.org/10.1145/3009837
https://doi.org/10.1145/358746.358755
https://doi.org/10.1145/2997364.2997365
https://doi.org/10.1145/2997364.2997365

	1 Introduction
	2 Structure Editor Design
	2.1 Example

	References

